

SI MOS SPIN QUBITS FOR QUANTUM COMPUTING

Louis Hutin – louis.hutin@cea.fr | July 9 2019

WHAT WILL QUANTUM COMPUTING DO?

OUTLINE

Linear arrays of Si MOS quantum dots

- 3 Higher dimensional architectures for fault-tolerant QC
- 4 Perspectives for scaling up

CLASSICAL BIT VS. QUANTUM BIT

A classical bit can be a vector pointing either to 1 or 0.

CLASSICAL BIT VS. QUANTUM BIT

State described as a **superposition** of two basis states, with a **phase** term between their coefficients.

$$|\psi\rangle = cos \frac{\theta}{2} |0\rangle + e^{i\varphi} sin \frac{\theta}{2} |1\rangle$$

A classical bit can be a vector pointing either to 1 or 0.

A quantum bit can point to anywhere on this unit sphere.

CLASSICAL BIT VS. QUANTUM BIT

State described as a superposition of two basis states, with a phase term between their coefficients.

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

This is precisely how **two-level quantum systems** behave:

- polarization of a photon
- spin of an electron/atom/molecule
- electronic states of a trapped ion
- presence or absence of a charge in a quantum dot
- modes of a superconducting / nanomechanical oscillator

A quantum bit can point to anywhere on this unit sphere.

QUANTUM PARALLELISM

- 1 op onto N basis states = N ops simultaneously
- Adding 1 qubit multiplies the number of basis states by 2

$$|0\rangle + |1\rangle \longrightarrow f \longrightarrow f(|0\rangle) + f(|1\rangle)$$

$$|00\rangle + |01\rangle + |10\rangle + |11\rangle \longrightarrow f$$

$$|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |111\rangle$$

... calculation on a superposition of 2^N basis states.

30 qubits: 109 operations in parallel

300 qubits: 10⁹⁰ (>nb of atoms in the universe)

HOW MANY QUBITS DO WE NEED?

Quantum supremacy in simulation: >56 logical qubits

Quantum chemistry for medicine and material development: >200 logical qubits

Prime factorization of large numbers for **security**: >2000 logical qubits

HOW MANY QUBITS DO WE NEED?

Redundancy for Quantum Error Correction!

Quantum supremacy in simulation: >56*1e3-1e5 qubits

Quantum chemistry for medicine and material development: >200*1e3-1e5 qubits

Prime factorization of large numbers for security: >2000*1°3-1°5 qubits

At least a million: Qubit platform needs to be extensible.

QUANTUM INFORMATION IS FRAGILE

Interactions with noisy environment will cause errors (decoherence) due to:

- **Dephasing**
- Relaxation

Qubits defined in the best-isolated systems have the longest coherence times... they are also harder to manipulate (slow).

Q-factor: number of rotations in the sphere before losing coherence. Measure of the stability/addressability trade-off

SI QUBITS: LATE BUT ON THE RISE

- Excellent outlook on extensibility due to small size and compatibility w/ VLSI techniques.
- Material engineering (isotopic purification, charge noise reduction...) and control schemes development have kept the Q-factor increasing.

- Yoneda et al. (RIKEN), Nature Nano 2018: Quantum dot electron spin qubit in ²⁸Si/SiGe
- Takeda et al. (RIKEN), Science Adv. 2016: Quantum dot electron spin qubit in natSi/SiGe
- Zajac et al. (Princeton), Science 2018: Quantum dot electron spin qubit in natSi/SiGe
- Veldhorst et al. (UNSW), Nature 2015: Quantum dot electron spin qubit in ²⁸Si
- Maurand et al. (CEA), Nature Comm. 2016: CMOS hole spin gubit in natural Si
- 🜟 Kawakami et al. (TUDelft), Nature Nano 2014: Quantum dot electron spin qubit in natSi/SiGe
- Pla et al. (UNSW), Nature 2012: Single-donor electron-spin qubit in natural Si

A COMMON TECHNOLOGY PLATFORM

OUTLINE

Linear arrays of Si MOS Quantum Dots

- 3 Higher dimensional architectures for fault-tolerant QC
- 4 Perspectives for scaling up

STEP 1: CHARGE CONFINEMENT

To make a N-qubit register:

- confine N electrons
- possibility of nearest neighbor coupling
- \Rightarrow Use MOS Gates on a SOI NanoWire to form a Coulombian « egg-carton »
- ⇒ Load electrons (eggs) from the side reservoirs

STEP 2: SPIN MANIPULATION

To induce spin transitions:

- Provide MW excitation at the spin resonance frequency
- ⇒ May be applied locally by E-Field on Gates (fast but unstable)
- ⇒ May be applied globally by B-Field, E-Field used on Gates to tune qubit in/out of resonance (stable but slow)

STEP 3: SPIN READOUT

To sense a spin event:

- Implement spin-to-charge conversion scheme
- Use a neighboring sensor (also a Quantum Dot)

DERIVATIVE APPROACH: TEST VEHICLE

Fast prototyping - obvious CMOS-compatibility Limited qubit interconnectivity

Has enabled so far:

All-electrical hole spin qubit R. Maurand et al., Nature Communications, 2016 L. Hutin et al., VLSI 2016

All-electrical electron spin manipulation A. Corna et al., npj Quantum information, 2018

Tunable spin-valley mixing using SOI backgate L. Hutin et al., VLSI 2018

L. Bourdet et al., Phys Rev. B, 2018

Single-shot spin readout M. Urdampilleta et al., VLSI 2017

A. Crippa et al., Nature Communications, 2019

M. Urdampilleta et al., Nature Nanotechnology, 2019

Will keep teaching us:

- Impact of materials on decoherence (dielectrics, interfaces, ²⁸Si...)
- Q-factor optimization
- High-fidelity measurements
- Long range coupling strategies

OUTLINE

Linear arrays of Si MOS Quantum Dots

- 3 Higher dimensional architectures for fault-tolerant QC
- 4 Perspectives for scaling up

SURFACE CODE IN A 2D ARRAY

A. G. Fowler et al., Phys. Rev. A 86, 2012

Surface code is popular b/c compatible with 1% error threshold (⇔ Q>100)

It takes a minimum of thirteen physical qubits to implement a single logical qubit. A reasonably fault-tolerant logical qubit that can be used effectively in a surface code takes of order 10³ to 10⁴ physical qubits.¹

¹ This number depends strongly on the rate that errors occur on the physical qubits.

Not compatible w/ traditional MOS layout

⇒ Custom integration of 2D Quantum Dot arrays

SURFACE CODE IN A 2D ARRAY

A. G. Fowler et al., Phys. Rev. A 86, 2012

Surface code is popular b/c compatible with 1% error threshold (⇔ Q>100)

It takes a minimum of thirteen physical qubits to implement a single logical qubit. A reasonably fault-tolerant logical qubit that can be used effectively in a surface code takes of order 10³ to 10⁴ physical qubits. 1

Each physical qubit should be individually addressable

Where do we fit:

- Qubit readout (charge detectors)?
- Addressing classical transistors?

Can we handle:

- Crosstalk (cf. fidelity)?
- Data rates of refreshed readout?
- Power dissipation?

¹ This number depends strongly on the rate that errors occur on the physical qubits.

HYBRID CIRCUITS, 3D STACKING

HYBRID CIRCUITS

- Monolithic coplanar integration of classical and quantum electronics
- ⇒ Requires long-range qubits coupling

L.M.K. Vandersypen et al., npj Quant. Inf. (2017)

M. Veldhorst et al. (UNSW), Nature Comm. (2017)

3D STACKING

- Requires two or more superimposed active layers
- Very high density of vias and interconnects
- ⇒ Challenges: alignment, managing cross-talk
- ⇒ CoolCube[™] expertise in Leti

EXTENSIBLE ARCHITECTURES FOR FAULT-TOLERANT QC

T. Meunier et al. (CNRS), VLSI 2019

- Several groups (UNSW, QuTech / Intel, CEA/CNRS) thinking about large 2D (or 3D) arrays of QDs.
- Convergence on **crossbar addressing** due to I/Os bottleneck
- Different stances on balancing density, cross-talk and variability management
- Strong local partnership around ERC Synergy project QuCube (Leti/IRIG/CNRS I-Néel)

OUTLINE

Linear arrays of Si MOS Quantum Dots

- 3 Higher dimensional architectures for fault-tolerant QC
- 4 Perspectives for scaling up

HOT TOPICS FOR COLD QUBITS: 28SI

Coherence time will set a limit to how large a qubit array can be.

²⁸Si is nuclear spin-free (²⁹Si is not): improved coherence

Collaboration with the Russian Academy of Sciences: conversion of ultra-centrifuged ²⁸SiF₄ into ²⁸SiH₄

Silane-based epitaxial growth onto 300mm wafers at Leti with **99.992% purity** and high uniformity.

V. Mazzocchi et al., J. Crystal Growth, 509, 2019

HOT TOPICS FOR COLD QUBITS: CRYO-CMOS

H. Bohuslavskyi et al., IEEE TED 2018

FDSOI for on-chip control electronics

- Power dissipation constraints warrant low supply voltage operation.
- The subthreshold slope steepens at very low T, which may be good or bad.
- The ability to shift the whole MOSFET characteristics with a back-Gate bias and no channel doping is an important design asset.
- FDSOI also a local specialty.

HOT TOPICS FOR COLD QUBITS: LONG RANGE COUPLING

Use MW photons in co-integrated superconducting resonators to couple distant Si spin qubits.

Science

QuTech - 25/01/2018

Strong spin-photon coupling in silicon

N. Samkharadze, 1* G. Zheng, 1* N. Kalhor, 1 D. Brousse, 2 A. Sammak, 2 U. C. Mendes, 3 A. Blais, 3.4 G. Scappucci, 1 L. M. K. Vandersypen1+

¹QuTech and Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1, 2628 CJ Delft, Netherlands. ²QuTech and Netherlands Organization for Applied Scientific Research (TNO), Stieltjesweg 1 2628 CK Delft, Netherlands. 3Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada. 4Canadian Institute for Advanced Research, Toronto, Ontario, Canada. 10.1126/science.aar4054 (2018)

Princeton - 14/02/2018

A coherent spin-photon interface in silicon

X. Mi¹, M. Benito², S. Putz¹, D. M. Zajac¹, J. M. Taylor³, Guido Burkard² & J. R. Petta¹ doi:10.1038/nature25769

GENERAL CONCLUSIONS

- Quantum information is very powerful, yet fragile. For each possible qubit platform: stability/addressability/extensibility trade-off.
- Quantum technologies are still at an early stage. Particularly true for Si spin qubits, not the leading approach but on the rise, with high potential for extensibility.
- SOI NW transistor geometry still a useful learning vehicle, but topological compatibility with QEC will require dedicated 3D QD array designs and integration schemes.
- The challenges to be met for quantum hardware alone are important. In this case and for fault-tolerant architectures: material engineering, high density 3D integration, dissipation / cross-talk / data rates management.
- Plenty of opportunities for innovation!

Thank you!

Scott Adams/Dilbert

Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

