Forschungsfabrik Mikroelektronik Deutschland

Fraunhofer Group for Microelectronics in Cooperation with Leibniz Institutes FBH and IHP

Challenges and Trends in Neuromorphic Hardware

Why Neuromorphic Hardware?

factors of 29 to 200

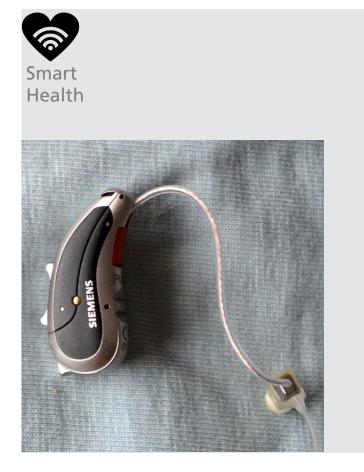
Power

Form factor

1......

Some applications demand very small form factors or e.g. bendable/printed electronics

Cause: "von Neumann-bottleneck" of traditional computer architectures


Dedicated ASICs accelerate inference of DNNs in comparison to CPU/GPUs by

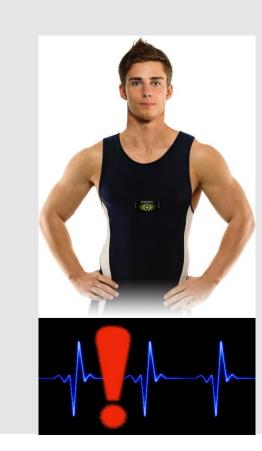
- 3D-integration and integration into sensor design are a means to reduce form factor and power
- Latency
 - High data-throughput from sensors (high resolution, high rates) needs to be managed locally
 - Industrial and automotive applications require latency of around and below 1ms

Use case 1: Hearing Aids

- Audio source separation requires complex signal processing and AI to isolate one talker from background noise in different scenarios
- Form factor and power consumption are major challenge incl. wireless communication
- Fraunhofer FMD has 250+ engineers working on audio technology in Erlangen, Germany
- Home of mp3, AAC and mobile audio codec development
- Technology built into 10+ billion devices

Use Case 2: Ultra-low-power Sensor Node

Smart Industry



- Example: Anomaly detection for a motor for predictive maintenance
- Measure vibrations and check, whether they are "normal"
- When strange vibrations occur, notify maintenance
- Communication by e.g. Fraunhofer MIOTY TM Technology
- Transmission of raw data exceeds power budget by far
- \rightarrow AI-based signal processing has to be inside the node

Use case 3: AI Processing in Wearables

- Example: Detection of Atrial Fibrillation in ECG signals
- Integrated into Fraunhofer FitnessSHIRT
- Ultra-low power AI-based processing of ECG signals due to limited batteries
- On-line analysis to inform the consumer immediately and without delay about any potentially dangerous condition

A cooperation of

Smart Health

FMD Expertise and Impact

- European consortium for Next Generation Computing is addressing the challenges on the algorithmic, design and technology side, e.g.
 - analog cross-bar designs using memristors and in memory computing,
 - mixed analog-digital spiking neural network architectures for ultra-low-power
 - FeFET, OxRAM, RRAM
- FMD areas of expertise
 - Signal processing, codecs and AI, e.g.10+ billion devices equipped with FMD technology
 - Software and hardware IP design, e.g. millions of radio receivers are equipped with FMD technology
 - Semiconductor technology and (3D-)integration, e.g. 10+ million wafer moves per year in FMD facilities
- FMD and CEA-Leti are building a strong European supply and value chain for Next Generation Computing

Your Contact

Albert Heuberger

Executive Director of Fraunhofer Institute for Integrated Circuits, Professor at University of Erlangen-Nürnberg

Fraunhofer Institute for Integrated Circuits Am Wolfsmantel 33 91058 Erlangen, Germany

albert.heuberger@iis.fraunhofer.de www.iis.fraunhofer.de

