

Teilnehmende Fraunhofer-Institute

Teilnehmende Fraunhofer Institute

Stand April 2023

	Fraunhofer-Institut für	
EMFT	Mikrosysteme und Festkörper-Technologien (Fraunhofer-Einrichtung)	München
ENAS	Elektronische Nanosysteme	Chemnitz
FEP	Organische Elektronik, Elektronenstrahl- und Plasmatechnik	Dresden
FFB	Forschungsfertigung Batteriezelle (Fraunhofer-Einrichtung)	Münster
HHI	Nachrichtentechnik, Heinrich-Hertz-Institut	Berlin
IAF	Angewandte Festkörperphysik	Freiburg
IAP	Angewandte Polymerforschung	Potsdam
IISB	Integrierte Systeme und Bauelementetechnologie	Erlangen
IMM	Mikrotechnik und Mikrosysteme	Mainz
IMS	Mikroelektronische Schaltungen	Duisburg
IOF	Angewandte Optik und Feinmechanik	Jena
IPA	Produktionstechnik und Automatisierung	Stuttgart
IPM	Physikalische Messtechnik	Freiburg
IPMS	Photonische Mikrosysteme	Dresden
IPMS-MEOS	Zentrum für Mikroelektronische und Optische Systeme für die Biomedizin	Erfurt
ISC	Silicatforschung	Würzburg
ISE	Solare Energiesysteme	Freiburg
ISIT	Siliziumtechnologie	Itzehoe
IST	Schicht- und Oberflächentechnik	Braunschweig
IZI	Zelltherapie und Immunologie	Leipzig
IZM	Zuverlässigkeit und Mikrointegration	Weßling
IZM-ASSID	All Silicon System Integration Dresden	Moritzburg

22 teilnehmende Fraunhofer-Institute mit Reinraumbetrieb

© Fraunhofer

Ziele und Nutzen I

Erfassung und Bewertung des Ist-Zustands in den Reinräumen bei Fraunhofer

Ermittlung von Einsparpotenzialen (baulich, technisch, betrieblich und Energie- / Wärmeversorgung)

Quantifizierung von Investitionsbedarf und Kosteneinsparung

Ziele und Nutzen II

Herleitung und Festlegung konkreter Energie- und Klimaschutzziele für Reinräume bei Fraunhofer

Erstellung einer Roadmap für die möglichst rasche, nachhaltige Transformation der Reinräume

Sammlung von übertragbaren Best-Practice-Beispielen

Ziele und Nutzen III

Bereitstellung von Werkzeugen und Hilfsmitteln zur Unterstützung der Reinrauminstitute

Etablierung eines regelmäßigen fokussierten Informations- und Erfahrungsaustausches mit den Reinraum- Instituten – **Netzwerk!**

Empfehlungen für nächste Handlungsschritte und Verbindliche Einführung einer Transformationsstrategie für Reinräume

Best Practice Fraunhofer FEP Dresden

11 09 2023

Fraunhofer FEP Organische Elektronik, Elektronenstrahl- und Plasmatechnik

Quelle: Gerd Obenaus, FEP

Wichtige Aspekte aus Sicht des Fraunhofer FEP

Technologisch notwendige Reinraumfläche - Reduzierung auf das Minimum an Fläche und Qualität

Parameter für RR-Betrieb – Unterteilen des Reinraumes in verschiedene Reinheitsbereiche, konsequente, aktive Nutzung des Absenkbetriebes, Einrichten eines Temperatur- und Feuchtebandes

Bau/Gebäudehülle – unbedingt die Luftdichtheit der Hülle sicherstellen (Blower-Door-Test), wenn möglich Dach für Eigenstromerzeugung ertüchtigen

TGA für Konditionierung – nur das Nötigste, intelligente Strategie, kritisches Hinterfragen von Überdruckparametern

Erst dann: klimaneutrale **Bereitstellung der Medien** wenn möglich max. regenerativ (Eigenstrom, Abwärme, Erdwärme)

Quelle: interner Reinraum-Workshopbeitrag von Gerd Obenaus, Leitung Technik am FEP

Potential für eine "regenerative" technische Ausstattung beim Fraunhofer FEP

- **1. Erdwärmetauscher** (Kühlwasser)
- 2. Adiabate Abluftbefeuchtung
- **3. Abwärmenutzung Serverraum** Wärmepumpe
- **4. Abwärmenutzung Gerätekühlung** RLT und Wärmepumpe
- 5. Kühlturmnachspeisung mit Regenwasser
- **6. Eigenstromerzeugung** mit PV

Besonderheit am FEP:

Energiemanagementsystem nach DIN EN ISO 50001 am FEP deutschlandweit zertifiziert

Investitionskosten nach 6 Jahren refinanziert

Quelle: interner Reinraum-Workshopbeitrag von Gerd Obenaus, Leitung Technik am FEP

Best Practice Fraunhofer ISE Freiburg

Fraunhofer ISE
Solare Energiesysteme
Zentrum für höchsteffiziente
Solarzellen (ZhS)

Quelle: Christian Schetter, ISE

Wichtige Aspekte aus Sicht des Fraunhofer ISE

Absenkung von Lüftungen, Medien in der Nacht, an Wochenenden und zum Jahreswechsel

WRG auch im Sommerbetrieb

Abschalten von parallel und redundanten Geräten, falls möglich und oder Schema für sequenzielle Nutzung entwickeln, z.B. Druckluft Trockner, Kompressoren, Dampfkessel, Medienpumpen, etc.

Geräte nur dann einschalten, bzw. erweiterten Stand-by generieren, **wenn sie gebraucht werden**, z.B. Brenner-Wäscher für Abgasreinigung PECVD Anlage, Ätzanlagen, Vakuumpumpen

Vakuum Anlagen mit vielen Turbopumpen mit **kleinen Vorpumpen** ausrüsten für Standby Betrieb, z.B. Sputter Anlagen

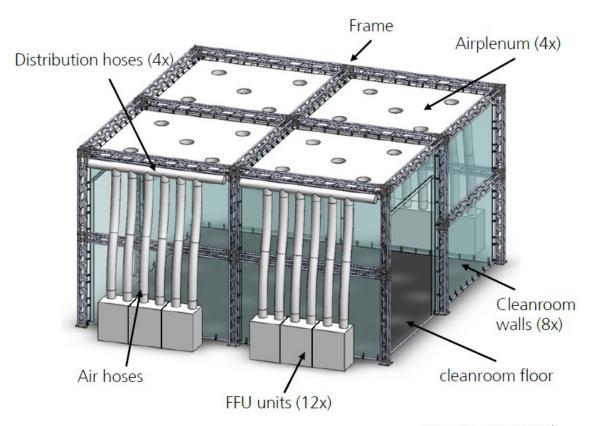
Spülstickstoff reduzieren wo möglich, z.B Rinser-Dryer mit Bypass Spülung

Quelle: interner Reinraum-Workshopbeitrag von Christian Schetter, ISE

Best Practice Fraunhofer IPA Stuttgart

Fraunhofer IPA
Produktionstechnik und
Automatisierung
Clean And Protective
Environment CAPE®

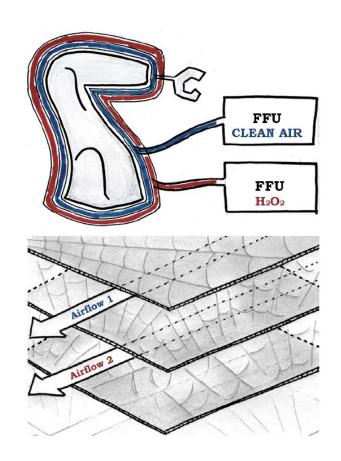
Quelle: Udo Gommel, Guido Kreck, IPA

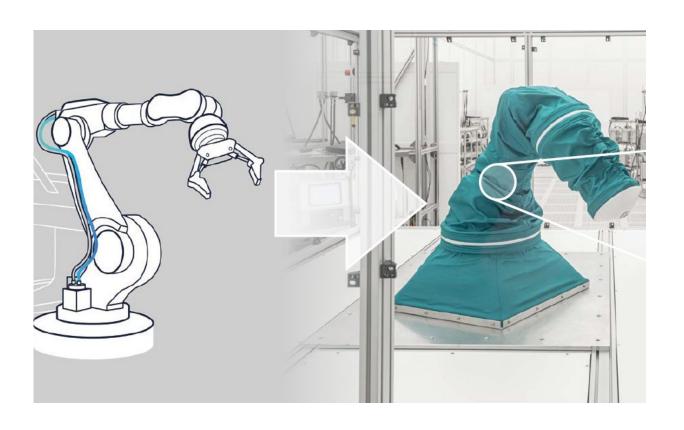


Clean And Protective Environment CAPE®

10 m (size XL) CAPE®

Quelle: interner Reinraum-Workshopbeitrag von Udo Gommel und Guido Kreck, IPA





Fraunhofer IPA – Innovation 2ndSCIN®

Quelle: interner Reinraum-Workshopbeitrag von Udo Gommel und Guido Kreck, IPA

Fazit und Ausblick

Energieeffizienz – passende Maßnahmen nur maßgeschneidert wirksam

Reinraum Netzwerk wird etabliert und insbesondere durch externe Profis erweitert

Nächster Workshop findet am 26.10.2023 von 13 Uhr bis 16 Uhr online statt

