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Dynamic Link-Capacity Adjustment
Motivation

Why do networks need dynamic link-capacity adjustment?

▪ Reduction of energy consumption and thus carbon footprint*

▪ Higher flexibility in provisioning of network resources → capacity allocation on demand

▪ Improved operation efficiency (on network operator side) → enable better utilization of available resources
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Traditional static link-capacity 
allocation

* A. Lange et al., „Energy Efficiency of Load-Adaptively Operated Telecommunication Networks“, J. Lightwave Technol., vol. 32, no. 4, Feb. 2014.



Dynamic Link-Capacity Adjustment
What are the main implementation requirements?

▪ Traffic Monitoring: a suitable telemetry framework supporting a 

variety of APIs, protocols, etc.

▪ ML-based Traffic Forecasting: an ML pipeline for live traffic 

prediction, and accurate/reliable traffic forecasting algorithms

▪ Dynamic Capacity Adjustment/Network Element 

Reconfiguration: suitable network control solutions for dynamic 

reconfiguration of the NEs
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Monitoring of Open and Disaggregated Optical Networks
Telemetry and Machine Learning Framework
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SDN: SDN Controller     |     TRx: Transponder     |     OLS: Open Line System |     ML: Machine Learning
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Traffic Monitoring and Capacity Adjustment
Granularity Considerations

▪ Traffic monitoring is often performed with 

a low frequency of measurements (e.g. 1h)

▪ Fine granular traffic monitoring required to 

catch short traffic spikes 

▪ Fine granular capacity adjustment steps 

and periods offer higher capacity and 

energy resource savings.

▪ The possible energy savings depend on the 

granularity of telemetry data and 

hardware reconfiguration capabilities.
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Monitoring of Open and Disaggregated Optical Networks
Telemetry and Machine Learning Pipeline

▪ Real-time telemetry framework and machine 

learning (ML) pipeline

▪ Based on open source components

▪ Real-time telemetry streaming from network 

elements to ML inference host and other data 

consumers on sub-second granularity

▪ Fundamental tool for generation of training 

data and real-time inference mode

▪ Simultaneous monitoring of traffic and energy 

consumption*

* ITU-T l.1333, Carbon data intensity for network energy 

performance monitoring
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ML-based Traffic Forecasting and Capacity Adjustment
Methodology
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Capacity calculation for the next adjustment cycle:

▪ 1st step: prediction of max traffic rate in the next cycle: ෨𝑅𝑚𝑎𝑥 𝑡𝑖+1 = 𝑓(𝑅𝑚𝑎𝑥 𝑡𝑖 , 𝑅𝑚𝑎𝑥 𝑡𝑖−1 , … , 𝑅𝑚𝑎𝑥 𝑡𝑖−𝑛 )

▪ 2nd step: calculation of the next cycle‘s allocated capacity: 𝐶 𝑡𝑖+1 =
෨𝑅𝑚𝑎𝑥 𝑡𝑖+1 +𝑀

∆𝐶
⋅ ∆𝐶

Goal: dynamically adjust link-capacity to the changing traffic volume by predicting the future traffic rate

TC

C(t) ΔC
C   (t)req

𝑅 𝑡 Data rate

𝑇c Capacity cycle interval

𝐶𝑟𝑒𝑞(𝑡) Required capacity

𝐶(𝑡) Allocated capacity

∆𝐶 Capacity granularity

𝑀 Capacity provisioning margin

Internal HHI Enterprise traffic flows used for analysis.



Dynamic Capacity Margin Allocation (DCMA)
Traffic set decomposition (feature engineering / extraction)
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2x long short-term 
memory (LSTM) neural
networks (NN)Ns:



Dynamic Capacity Margin Allocation (DCMA)
Results and Performance

▪ Test scenario (single switch): 

o ∆𝐶 = 50 𝑀𝑏𝑖𝑡/𝑠

o Prediction based on last 48 hourly maxima:
𝑅𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 values
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▪ Performance:

Set capacity with optimal (theoretical) 𝛿𝑚𝑎𝑥-based dynamic margin:

Set capacity after ෨𝑅𝑚𝑎𝑥 and ሚ𝛿𝑚𝑎𝑥 predictions:
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▪ Applied 𝜹𝒎𝒂𝒙-based DCMA matches the
optimal/target capacity in 97% of cases/adjustment
intervals.

▪ Average hourly capacity saving amounts to
77.77%/h.

▪ An under-provisioning risk of 0.45% is still present, 
due to „unpredictable“ traffic outliers.



Next Step: Validation in the Field
Large-Scale Testbed @ Fraunhofer HHI
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Conclusions

11.09.2023

And Outlook

▪ First results of ML-assisted Dynamic Capacity Margin Allocation show a promising performance of traffic 

forecasting using real-life traffic flows.

▪ Parameters such as granularity of telemetry data, provisioning latency, acceptable capacity reconfiguration 

frequency, available capacity levels, etc. play an important role and need to be considered for optimally tuning 

the ML-assisted solutions.

▪ Improved ML solutions to be implemented into a live ML-pipeline for traffic forecasting, followed by an 

automatic adjustment of link-capacity.

▪ Testing and PoC demonstration to be carried out on the Fraunhofer HHI large scale photonic testbed in 

collaboration with the 6G-RIC hub.
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