

FMD Innovation Days 2023 GreenICT

GreenICT EdgeLimit Balancing the ecological footprint of dense deployments

Thomas von der Grün, Fraunhofer IIS

EdgeLimit – Two German Funded Projects » Electronics for energy-saving information and communication technology « Fast-growing numbers of installations of 5G/6G campus networks and dense deployments in urban hotspots: How about their CO₂-footprint?

German funded project (BMBF) in two phases

- Competition project concluded in 2021 rank 2 of 10*: Proposal of a new concept for systematic evaluation
- 2. Follow-up project 2022 to 2024: Detailed technical implementation of evaluation concept with validated data and analysis of the potential of energy saving techniques
- Partners: Fraunhofer IAF (Projektlead), Fraunhofer IIS, Uni Freiburg, Nokia, United Monolithic Semiconductors (UMS), Deutsche Telekom

* https://www.bmbf.de/bmbf/shareddocs/pressemitteilungen/de/2021/08/190821-ICT-II.html

Fraunhofer

»5K-Ökodesign-Methode« (5C) for Dense Deployments

The 5Cs in EdgeLimit

1. Conditions:

Use cases for mm-wave: 5G Campus network indoor factory and Smart City dense urban area

2. Capacity:

- Defining load scenario over the day for the considered use cases
- Requirements for data throughput, number of supported UEs and positioning accuracy

3. Configuration:

- Multi-TRP architecture and compute network for O-RAN (RU, DU, CU, core)
- Complete architecture of a 5G+ campus network

4. Components:

- Electrical power budget considers MIMO antennas (RF chains), PAs, RFSoC FPGAs, computing resources,...
- 5. Control:
 - Selecting energy-efficient components and architectures and MIMO-schemes
 - Energy management by switching off resources: computing, transceivers, panels, sites

Multi-TRP-Simulation to assess network performance

Transmission Power

"Indoor Factory" Assumptions (aligned with 3GPP)

- Regular, idealistic deployments in different densities
- 3 load levels over 24h: modelled by count of UEs

Features

- »FR2« in DL/UL
- Power control
- Interference management
- Upcoming: orchestration for positioning

KPIs

- System Throughput [bit/s]
- Channel Capacity [bit/s/UE]

Multi-TRP-Simulation to assess MIMO-architecture options

Transmission Power

Modelling of MIMO architectures

- per 120° coverage:
 Option #1: 8x8 Antenna array, 1 TXRU
- \rightarrow analog beamforming

Option #2: 8x8 Antenna array, 4 TXRU
 → hybrid beamforming

Option #3: fixed sectorized Antenna array (30° sectors)
 → alternative with spatially fixed transmissions

EdgeLimit – Efficient RF-Hardware

Transmission Power

Components: PA

- PA by Fraunhofer IAF
 - ightarrow semiconductor material/design ightarrow better efficiency
- Note: PA efficiency effect scales in massive-MIMO-setups

RF modules and antennas

- Architectural design options \rightarrow efficient module design by Nokia
- RF module built around efficient PA
- Real-life antenna samples ightarrow available at Fraunhofer IIS
 - Analog beamforming: 64-elements, 1 transceiver
 - Hybrid beamforming: 256-elements, 4 transceivers
 - Fixed sectorized arrays: versions with 30° and 60° sectors
 - Own design of a scalable 16-element phased-array antenna tile

AI/ML: Reinforcement Learning (RL) for multi-TRP-Energy Saving FMD.iDay²³ Transmission Power

- Background at Fraunhofer IIS: RL for beam management
- Now in EdgeLimit: RL for beam management and energy savings
 - For lower network load,
 - several TRPs or sites can be deactivated (or set to sleep mode)
 - Different sleep modes → smaller energy consumption, larger "wake-up" transition time
 - Ensure minimum QoS

Complex task in dense deployments:

→ Combination of Reinforcement Learning and Discrete Optimization

Energy-efficient virtualization and orchestration Compute Power

Genesys ZU ARM Cortex A53 y = 0,0002x + 7,09287,9 R² = 0,9957 7,8 \$7,6 7,5چ P0=7,1W 67,4 Pmax=7,9W 7,3 7,2 7,1 3000 3500 0 500 1000 1500 2000 2500 4000 4500 Utilization (mCPU) Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz Power Consumption 100 v = 0.0066x + 88.482= 0,824 90 80 70 60 er (W) 50 P0=38,5W Pov 40 Pmax=91,2W 30 20 10 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Utilization (mCPU)

Test and measurement cluster at Fraunhofer IIS

Goal

Exploit savings potential for edge distributed computing

Energy savings in the partial load range

Distribute software containers in the partial load range

Unused components are completely shut down

Tool "Network Energy Balance", an Excel-based simulation mode FMD.iDay²³ Results Generation

- Input:
 - RF Level Plans
 - Efficiency and energy consumption of components
 - System resource usage, scaling with system load
 - Forecast of worldwide spread of systems

Output:

- Portion of energy usage of each relevant component
- Extrapolation to worldwide CO₂-footprint
- Quantification of savings potential of optimization approaches

Note: KPIs (e.g. data throughput) from system simulation

	2018-2020	2025		2030	
		GreenICT [kWh/a]	Referenz [kWh/a]	GreenICT [kWh/a]	Referenz [kWh/a]
S1: Campusnetzwerk	0	180.868.596	737.295.912	361.737.192	1.474.591.824
S2: Urban Szenario	0	237.908.059	607.792.014	475.816.118	1.215.584.028
Hochrechnung der beiden Szenarien auf 10 Staaten in Europa (D, E, Fr, It, Dänemark, Benelux, Polen, Tschechien)	0	S1: 1.085.211.576 S2: 1.427.448.354	S1: 4.423.775.472 S2: 3.646.752.084	S1: 2.170.423.152 S2: 2.854.896.708	S1: 8.847.550.944 S2: 7.293.504.168
Maximale Gesamtersparnis	0	CO2 in kg 2.223.147.050		CO2 in kg 4.446.294.100	

Overall analysis method, efficient solutions for transmission and compute, energy saving algorithms

All partners busily working on their topics:

Upcoming Work

Summary and Outlook

Current Project Status

Integration and Validation

Edge-Limit-2 at half time

Joint Conclusions on CO₂-footprint of dense deployments (assuming different figures for worldwide rollout)

Demonstration and discussion of the optimization potential

Relevance and Relations

3GPP: "Network Energy Savings" as topic in Rel-18 and upcoming topic for Rel-19

Input to the natively energy efficient design of 6G

EdgeLimit – How to Assess Energy Efficiency

Team Green-ICT-EdgeLimit

thomas.vondergruen@iis.fraunhofer.de

