Das Bild zeigt einen monolithisch integrierten QPSK Empfänger, welcher als Demonstrator für die erfolgreiche Herstellung von photonischen und elektronischen Komponenten im selben Prozess dient. Mit diesem Chip wurden Daten mit einer Übertragungsrate von 56GBit/s empfangen. Die verwendete Technologie (SG25H_EPIC) wurde im November 2016 erstmals über den MPW Service öffentlich angeboten. (Ansprechpartner Georg Winzer) The picture shows a monolithically integrated QPSK receiver, being a demonstrator to proof successful fabrication of photonic and electronic components using the same process. Using this chip data at a transmission rate of 56GBit/s was received. The used technology (SG25H_EPIC) was offered in November 2016 for the first time via MPW service for public subscription. Das IHP ist ein Institut der Leibniz-Gemeinschaft und betreibt Forschung und Entwicklung zu siliziumbasierten Systemen, Höchstfrequenz-Schaltungen und -Technologien einschließlich neuer Materialien. Es erarbeitet innovative Lösungen für Anwendungsbereiche wie die drahtlose und Breitbandkommunikation, Luft- und Raumfahrt, Biotechnologie und Medizin, Automobilindustrie, Sicherheitstechnik und Industrieautomatisierung. Das IHP beschäftigt ca. 300 Mitarbeiterinnen und Mitarbeiter. Es verfügt über eine Pilotlinie für technologische Entwicklungen und die Präpa-ration von Hochgeschwindigkeits-Schaltkreisen mit 0,13/0,25 µm-BiCMOS-Technologien, die sich in einem 1000 m² großen Reinraum der Klasse 1 befindet.

Our cross-location competencies in Microwave & Terahertz

Microwave & Terahertz

The technology platform Microwave & Terahertz offers turnkey as well as customized solutions along the entire microelectronic value chain. We can help you with profound knowledge in design, manufacturing, packaging and characterization, as well as cost-efficiency-tests for reliable devices with high performances, integrated circuits and systems for applications up to the THz-regime. In the development-section we focus on emerging future applications, especially the ones related to communication and sensing (e.g. 5G mm-Wave or radar sensing for autonomous / self-driving vehicles).


In-depth knowledge in Packaging and Heterointegration for high frequency applications

Leading-edge Devices and Circuits for applications up to the THz-regime

Design of Systems e.g. for communication or high and ultra-high frequencies

FMD offers Si-based and Compound-Semiconductor-based Cleanrooms that allow processing of Si, SiGe, InP, GaN/SiC, InGaAs/GaAs to build devices such as HBTs, HEMTs, passive structures or mm-Wave Integrated Circuits (MMICs)

R&D on the Integration of III-V-materials into Si-based Technologies

Integration of InP-based HBT BICMOS Technology into one single chip

Test and Characterization of designed, with SiGe:C manufactured and assembled systems (also in harsh environments)


Europractice IC Service: Multi Project Wafer (MPW) and Prototyping 

Within the EUROPRACTICE IC Service, the Leibniz IHP as part of the Research Fab Microelectronics Germany, is providing a manufacturing service for Multi Project Wafer (MPW) and Prototyping. More information here.

Flyer Microwave & Terahertz

Download Flyer


Joint project »T-KOS«

Terahertz technologies for visionary innovations in communications and sensor technology


MIRANDA-94: High Resolution Real Time SAR Imaging


5G Infrastructure for Future Wireless Communications

Compact Microwave Plasma Source

a versatile tool for various applications

GaN Microwave & Power Switching Devices

InP HBT Technology for Terahertz Applications

RF, Microwaves & Milimeter Waves

W-Band Radar Modules

Directional Radio Links for Industry 4.0 and 5G

Submillimeter-wave ICs and Modules

Integrated circuits for terahertz frequencies

High-Frequency Electronics

With its 13 member institutes of the Fraunhofer-Gesellschaft and Leibniz Association, the Research Fab Microelectronics Germany (FMD) demonstrates research achievements of international excellence. In this way, FMD contributes to Germany and Europe, taking a leading position in research and development. Some selected research highlights and lighthouse projects in the field of high-frequency electronics can be found below.

The list of all publications for the Microwave & Terahertz Technology Platform for download:

III-V-MOSHEMT - Novel Transistor Technology with Record Operating Frequencies

Amplifier circuit with MOSHEMT transistors at 243 GHz.
© Fraunhofer IAF
Amplifier circuit with MOSHEMT transistors at 243 GHz.

Combining the advantages of III/V semiconductors and Si-MOSFETs in a novel device (Metal Oxide Semiconductor HEMT - MOSHEMT)

  • The maximum oscillation frequency of 640 GHz exceeds the world's technology standard for any MOSFET technology, including silicon MOSFETs
  • Reduction of the gate leakage current by more than a factor of 1000
  • The world's first amplifier IC based on InGaAs-MOSHEMTs for the frequency range between 200 and 300 GHz


EU-Project INSIGHT (H2020)
EU-Project SEQUENCE (H2020)


Tessmann et al. (2019): 20-nm In0.8Ga0.2As MOSHEMT MMIC Technology on Silicon; IEEE Journal of Solid-State Circuits (Volume: 54, Issue: 9 , Sept. 2019), DOI: 10.1109/JSSC.2019.2915161

Leuther, A. et al. (2019): THz frequency HEMTs: Future trends and applications, Compound Semiconductor Week, CSW 2019. Proceedingss, Japan, DOI: 10.1109/ICIPRM.2019.8819000

Tessman, A. et al. (2018): High gain 220 - 275 GHz amplifier MMICs based on metamorphic 20 nm InGaAs MOSFET technology, IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium, BCICTS 2018, USA, DOI: 10.1109/BCICTS.2018.8550836

Further information:

MOSHEMT - innovative transistor technology reaches record frequencies

Digital Power Amplifiers

Highly efficient and compact: novel GaN-based digital power amplifier MMIC (3-stage). The novel concept delivers highest PAE (40 %) over 10 dB power back-off range at 900 MHz. Highest linearity achieved: with the help of push-pull drivers digital amplifier according to DPD delivers more than 50 dB A.
© Leibniz FBH
Highly efficient and compact: novel GaN-based digital power amplifier MMIC (3-stage). The novel concept delivers highest PAE (40 %) over 10 dB power back-off range at 900 MHz. Highest linearity achieved: with the help of push-pull drivers digital amplifier according to DPD delivers more than 50 dB A.
  • The world's first completely digital transmitter chain implemented
  • Realization of a GaN-based purely digital transmitter chain in the microwave range
  • New (patented) modulator concept, digital PA (patented), filter, switch (patents: US 2019 / 0131999 A1 & DE 102016106790A1)


DFG-funded projects (WE 6288/3-1, WE 6288/1-1)


Hühn, F. et al. (2017): A New Modulator for Digital RF Power Amplifiers Utilizing a Wave-Table Approach, International Journal of Microwave and Wireless Technologies, Volume 9, Issue 6, pp. 1251 – 1260, July 2017. DOI: 10.1109/EuMC.2016.7824474

Hühn, F. et al. (2019): Highly Compact GaN-based All-Digital Transmitter Chain Including SPDT T/Rx Switch for Massive MIMO Applications, International Journal of Microwave and Wireless Technologies, Vol. 11, Special Issue 7, pp. 609 - 617, April 2019.

DOI: 10.1017/S175907871900045X

Hühn, F. et al. (2019): A Reconfigurable Modulator for Digital Outphasing Transmitters, IEEE MTT-S International Microwave Symposium Digest 2019, pp. 1480 – 1483, USA 2019. DOI: 10.1109/MWSYM.2019.8700817

Hoffmann, T. et al. (2019): GaN Digital Outphasing PA, Proceedings of the 49th European Microwave Conference (EuMC) 2019, pp. 551 - 554, France. DOI: 10.23919/EuMC.2019.8910788

Further information:
Digital PA Lab

SiGe Single-Chip Radars

The radar chip in an open QFN package, which is mounted on an FR4 board.
© Fraunhofer FHR
The radar chip in an open QFN package, which is mounted on an FR4 board.
  • Development of broadband analog circuits up to 300 GHz for high-resolution imaging using SAR and ISAR techniques --> First SAR images at 300 GHz worldwide
  • Integrated FMCW radar chips up to 240 GHz
  • Development of multi-channel transmit/receive chips for MIMO applications


EU project RadiFLAT
Collaborative Research Centre Marie


Thomas, S. et al. (2019): A SiGe-Based 240-GHz FMCW Radar System for High-Resolution Measurements, IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4599-4609, Nov. 2019. DOI: 10.1109/TMTT.2019.2916851

Thomas, S. et al. (2016): A Compact, Energy-Efficient 240 GHz FMCW Radar Sensor with High Modulation Bandwidth, Proc. German Microwave Conference (GeMiC) 2016, Germany. DOI: 10.1109/GEMIC.2016.7461639

Thomas, S. et al. (2017): Ultra-Wideband Signal Generation at 300 GHz in a SiGe BiCMOS Technology, Proc. 12th European Microwave Integrated Circuits Conference (EuMIC), Germany, 2017. DOI: 10.23919/EuMIC.2017.8230679

Further information:

High-Resolution 240-GHZ Radar with SiGe Chip